

Structural Calculations BJG# 20070133

Project:

0403-572A

Prepared for:

MicroMetl Corporation

905 Southern Way Sparks, NV 89431

Date:

August 2007

Job#: Bv: 20070133

By: Date: TRH 9/6/2007

Page:

0403-572A

Frame	and	Support	Curb	Information
1 1 allic	allu	JUNIOL	VUID	HHOHIIAUUII

Product Number 0403-572A-01CBC

h _{FRAME} =	30	in - Overall height from support substrate to top of curb
h _{SUPPORT} =	6	in - Height of support curb from top of isolators to bottom of unit
L _{CURB} =	43.125	in - Longitudinal distance from center-to-center of transverse curb members
W _{CURB} =	40.75	in - Transverse distance from center-to-center of longitudinal curb members
h _i =	4.5	in - Height of isolator
d _i =	7.5	in - Dist, off long member end to isolator
$d_{HD} =$	7.5	in - Dist. off short member end to holddown

Unit Information	DNY
Unit information	זמט

$W_P =$	740	lbs - Max. unit weight
h _{UNIT} ≔	41.5	in - Overall unit height above curb
h _{cM} ≡	27.7	in - Height above curb to center of mass
L _{UNIT} =	47.25	in - Overall unit length (longitudinal direction)
W _{UNIT} =	49.125	in - Overall unit length (transverse direction)

Seismic Loading - 2006 International Building Code (2006 IBC)

Fp _{MAX} = 1.6	8 * S _{DS} * lp * Wp	
Ss ==	2	(2 is worst case in NV, OR, WA, AZ)
Fa =	1	(1.0 at worst case Site D, Ss ≥ 1.25)
Sms =	2	= FaSs
S _{DS} =	1.33	= 2/3 Sms
lp =	1.5	(1.5 at worst case Occupancy)
$Fp_{MAX} =$	3.20	Wp
Fp _{MAX} =	2,29	Wp (ASD)
Fp _{MAX} =	1691	b (ASD) - ASD values will be used throughout unless noted otherwise

Seismic Loading - 2001 California Building Code (2001 CBC)

Fp_{MAX}	=	4	*	Ca	*	lp	*	Wp	

, .	
0.44	(.44 at worst case at Zone 4, Soil Type Sd)
1.5	(1.5 at worst case Seismic Source Type A <= 2km)
1.5	(1.5 at worst case Occupancy)
3.96	Wp
2.83	Wp (ASD)
2093	lb (ASD) - ASD values will be used throughout unless noted otherwise
	1.5 1.5 3.96 2.83

Controlling Seismic Loads

Fp _{MAX} =	2.83	Wp (ASD)
Fp _{MAX} =	2093	lb (ASD) - ASD values will be used throughout unless noted otherwise

Wind Loading Check

Max. Projected Area $(A_{MAX}) = h_{UNIT} * MAX (L_{UNIT} \text{ or } W_{UNIT})$

Equivalent wind pressure required to equal seisimic loading (P_{EQ}) = Fp_{MAX} / A_{MAX}

 $P_{EQ} =$ 148 psf (ASD) OKAY BY INSPECTION: P > 60 PSF

Job#:

20070133

By: Date: TRH 9/6/2007

Page:

2

0403-572A

Connectors from Unit to Support:

Use Self-drilling, Self Tapping Steel Screws, allowable load per Table IV-7A of the cold formed steel manual #10 screw allowable load in 16 gage minimum material is 463 lbs each

Transverse or Longitudinal Loading

$$V_{\text{each side}} = 2/3 * \text{Fp}_{\text{MAX}} \text{ (ASD)}$$
 $V_{\text{HD}} = \boxed{1395}$ | Ib per side (where applicable)

Transverse Loading

Holddowns:

11014401111	O+	
N _{HD} =	1	Number of holddowns per long side
$R_{HD1} = (Fp_i)$	_{MAX} * h _{CM}) /(N _{HD} * W	V _{CURB}) - 1/3 * W _P
R _{HD1} =	1174	lb per HD uplift
$V_{HD} =$	0	lb per HD

Max Resultant Force =	1174	lb per HD
Min Screws Required =	3	per HD

Isolators:

$$\begin{split} R_{\text{MAX}} &= \left(\text{Fp}_{\text{MAX}} * \left(h_{\text{cm}} + h_{\text{s}}\right)\right) / \,W_{\text{CURB}} + 2/3 * W_{\text{P}} \\ R_{\text{MAX}} &= \boxed{2223} \quad \text{Ib per side - Downward} \\ \text{RISO }_{\text{MIN}} &= \left(\text{Fp}_{\text{MAX}} * \left(h_{\text{cm}} + h_{\text{s}}\right)\right) / \,W_{\text{CURB}} - 1/3 * W_{\text{P}} \\ R_{\text{ISO MIN}} &= \boxed{1483} \quad \text{Ib per side} \quad \text{uplift} \\ V_{\text{ISO}} &= F_{\text{pMAX}} / (\# \, \text{Iso}) \\ V_{\text{ISO}} &= \boxed{0} \quad \text{Ib per side} \end{split}$$

Longitudinal Loading

Holddowns:

$$\begin{split} R_{HD1} &= \left(F_{pmax} * h_{cm}\right) / \left(2^*(L_{UNIT} - d_{HD}) - 1/6^*W_P \\ R_{HD1} &= \boxed{ 605 } \\ V_{HD} &= \boxed{ 1395 } \end{split} \label{eq:RhD1} \begin{tabular}{ll} b per HD & Assume all uplift into end holddowns \\ lb per HD \\ \end{tabular}$$

Max Resultant Force =		lb per HD
Min Screws Required =	4	per HD

Isolators:

$$\begin{split} R_{MAX} &= \left(Fp_{MAX}*\left(h_{cm} + h_s\right)\right) / \left(L_{CURB} - 2d_i\right) + 2/3*W_P \\ R_{MAX} &= \boxed{2999} \quad \text{lb per side - Downward} \\ R_{ISO MIN} &= \left(Fp_{MAX}*\left(h_{cm} + h_s\right)\right) / \left(L_{CURB} - 2d_i\right) - 1/3*W_P \\ R_{ISO MIN} &= \boxed{2259} \quad \text{lb per side} \quad \text{uplift} \\ V_{ISO} &= V_{each \ side} \\ V_{ISO} &= \boxed{1395} \quad \text{lb per side} \end{split}$$

Job#: 20070133 By: TRH Date: 9/6/2007 Page: 3 0403-572A

Isolator Load Summary

USE	2	TYPE	OPA0070 Isolator restraints each long side for shear and vertical
USE	0	TYPE	OPA0070 Isolator restraints each short side for shear

Max. $V_{ISO} \leftrightarrow = V_{ISO}$ max. due to transverse or longitudinal loading

Max. $V_{ISO} \leftrightarrow = 1395$ lb per side

Max. V_{iso} ↔ = 698 lb each isolator

Max. R_{ISO} ‡ = max. downward force due to transverse or longitudinal loading

Max. $R_{ISO} \downarrow =$ 2999 | Ib per side

Max. R_{ISO} ↓ = **1499** Ib each isolator

Max. $R_{\rm ISO} \uparrow$ = max. uplift force due to transverse or longitudinal loading

Max. R_{ISO}↑ = 2259 | 1b per side

Max. R_{ISO} ↑ = 1129 Ib each isolator

PRE-APPROVED MAXIMUM ALLOWABLE LOADS

Allowable Horizontal = 1000 | Ib each isolator OKAY
Allowable Vertical = 1600 | Ib each isolator OKAY

Tube Steel Support Assembly

Use 10GA cold-formed overlapping channels, 6" tall, 1.125" wide; Use properties for hollow rectangle Conditions and formulas per AISI Cold-Formed Steel Specification (2001)

Analyze as a beam

Bending: (Per C3.1)

Dending.	1 01 00.17	
t =	0.134	in
Fy =	33	ksi
= d	1.125	in
d =	6	in
C ^p =	1.14	AISC 13th ed. Table 3-1
E =	29000	ksi
G =	11500	ksi
l _y =	0.41	in⁴
J =	1.71	în⁴
S _x =	2.057	in ³
Ax =	1.61	in ²
$b_1 = b - 2 * t =$	0.857	in
$d_1 = d - 2 * t =$	5.732	in
$L = L_{CURB} - 2 * d_i =$	28.125	in
$L_u = L / 2 =$	14.06	in
$b_{eff} = b - 3 * t =$	0.723	in
$h_{eff} = d - 3 * t =$	5.598	in

Allowed Lateral Unbraced Length, LA

$$L_{A} = 0.36*C_{b}\pi/(FyS_{y})*(EGJIy)^{1/2}$$

$$L_{A} = 291.2 \text{ in } (Eq. C3.1.2.2-1)$$

$$\Omega_{b} = 1.67$$

If laterally unbraced length is less than or equal to $L_{\rm u}$, then the nominal moment $M_{\rm n}$ shall be used

$$Lu < La OKAY$$

$$M_n = S_e F_y$$

$$M_n / \Omega_b = \boxed{40.6} k-in \qquad (Eq. C3.1.1-1)$$

Max moment due to center holddown, \mathbf{M}_{u}

$$M_u = (RMAX/L)L^2/8 = W L^2 / 8$$
 $M_u = 10543.02 | lb-in$
 $M_u = 10.54 | k-in$

BENDING OKAY

Job#:

20070133

By: Date:

TRH 9/6/2007

Page:

0403-572A

Nominal Shear Strength

$$V_{n} = A_{w}F_{v}$$

$$V_{n} = 31.8 \text{ kips}$$

$$V_{n} / \Omega_{v} = 19.9 \text{ kips}$$
(Eq. C3.2.1-1)

Max Shear Force

$$V_u = R_{MAX} / 2$$
 $V_u = 1.50$ kips OKAY

Web Crippling: (Per C3.4.1)

HCD CIDD	ming. (1 Ci OU.7.1)	
C =	7.5	
C _h =	0.048	
$C_h = C_N = C_R = C_R$	0.12	
C _R =	0.08	
$\Omega_{w} =$	1.75	
N =	4	in.
R = θ =	0.25	in.
θ =	90	٥

Note: N = Bearing length per isolator

Nominal Web Crippling Strength

$$\begin{split} P_n &= Ct^2F_y \sin\theta (1-C_R(R/t)^{1/2})(1+C_N(N/t)^{1/2})(1-C_h(h/t)^{1/2}) \\ P_n &= \begin{bmatrix} 4.45 & \text{kips / web (Eq. C3.4.1-1)} \\ P_n &= 8.90 & \text{kips} \\ P_n / \Omega_w &= 5.084 & \text{kips} \\ \end{bmatrix} \end{split}$$

$$P_u = R_{MAX} / \#$$
 of isolators per side

$$P_u =$$
 1.499 kips (long side)
 $P_u =$ 0.00 kips (short side)

OKAY

Frame Assembly Stiffeners

Use 16 gage stiffener material

Conditions and formulas per AISI Cold-Formed Steel Specification (2001)

t =	0.060	in
Fy=	33	ksi
Length =	7	in
Width =	1.5	in
Height =	20	ín
$\Omega_{\rm C}$ =	1.8	
A =	0.59	in²
r ₁ =	0.66	in
r ₂ =	2.53	in
kl/r _{min} =	30.4	

$$F_e = \pi^2 E / (KL/r)^2$$

 $F_e = 309.96$ ksi

$$= \frac{309.96}{\lambda_c} \text{ksi} \qquad (Eq. C4.1-1)$$

$$P_{n} = A_{e}F_{n}$$

$$P_{n} = 14.89$$

$$P_{n}/\Omega_{c} = 8.27$$

$$P_{U} = R_{MAX}/2$$
(Eq. C4-1)

STIFFENER OKAY

Anchorage to Supporting Structure

Shear to each long side = 1395 | lbs Shear to each short side = 1395 | lbs

$$\begin{split} R_{\text{ISO MIN}} &= \left(\text{Fp}_{\text{MAX}} * \left(\text{h}_{\text{cm}} + \text{h}_{\text{frame}} \right) \right) / \left. \text{W}_{\text{CURB}} - 1/3 * \text{W}_{\text{P}} \right. \\ & \text{Uplift to each long side} = \boxed{2715} \text{ lbs} \\ R_{\text{ISO MIN}} &= \left(\text{Fp}_{\text{MAX}} * \left(\text{h}_{\text{cm}} + \text{h}_{\text{frame}} \right) \right) / \left(\text{L}_{\text{CURB}} - 2 * \text{d}_{i} \right) - 1/3 * \text{W}_{\text{P}} \\ \text{Uplift to each short side} &= \boxed{4045} \text{ lbs} \end{split}$$

Anchorage to Concrete Pad

4 in. thick conrete pad - min. embedment of 3 in., min. spacing of 8 in. and min. edge distance of 6 in.

Job#:

Date:

Page:

Ву:

20070133

TRH

9/6/2007

5

0403-572A

w/ 1/2" Simpson Titen HD, allow = 1605 | lbs in shear w/ 1/2" Simpson Titen HD, allow = 1155 | lbs in tension

Try 3 Titen HD's per long side at a minimum
Try 4 Titen HD's per short side

(Actual Shear / Allowable Shear)^(5/3) + (Actual Tension / Allowable Tension)^(5/3) ≤1.0

Elliptical Interaction Equation = 0.793 at the long sides OK, less than 1.0 Elliptical Interaction Equation = 0.880 at the short sides OK, less than 1.0

Anchorage to Wood sub-Structure

With Simpson 1/4 x 3" SDS screws...

Allow Shear = 470 Ib per simpson catalog Allow Tension = 550 lb assuming 2" penetration per NDS Table 11.2B (#14 wood screw) 3 screws required for uplift long side 5 screws required for uplift short side 3 screws required for shear both sides 6 total screws required long side 8.60 inches maximum spacing 8 total screws required short side 5.8 inches maximum spacing

Anchorage to Steel sub-Structure

The steel sub-structure will have wood blocking in place between flutes of metal deck, therefore the required number of SDS screws will be the same as for the wood sub-structure.

Job#:

20070133

By: Date: Page: TRH 9/6/2007 6

0403-572A

Anchorage to Steel

With A307 1/2" Bolts...

t ==	0.060	in
F _y =	33	ksi
F _u =	45	ksi
e=	1	in.
d=	1/2	ìn.
width=	3	in.

Note: Connection evaluated without consideration of bolt hole deformation.

$$\begin{split} R_{\text{ISO MIN}} &= \left(Fp_{\text{MAX}} * \left(h_{\text{cm}} + h_{\text{frame}} \right) \right) / \left. W_{\text{CURB}} - 1/3 * W_{\text{P}} \right. \\ & \text{Uplift to each long side} = \boxed{2715} \text{lbs} \\ R_{\text{ISO MIN}} &= \left(Fp_{\text{MAX}} * \left(h_{\text{cm}} + h_{\text{frame}} \right) \right) / \left(L_{\text{CURB}} - 2 * d_{\text{i}} \right) - 1/3 * W_{\text{P}} \end{split}$$

Uplift to each short side = 4045 lbs

Shear to each long side = 1395 | lbs Shear to each short side = 1395 | lbs

Design strength based on spacing and edge distance:

_		_
kips/bolt	2.7	P _n ≔
	1.36	$F_u/F_y = [$
	2.00	Ω=[
	0.70	Ф=[
kips/bolt	1.35	P _n /Ω=
kips/bolt	1.89	ΦP _n =
NOTE: D	1 1/2	3d=

NOTE: Distance between bolt hole centers must be greater than 3d.

NOTE: Distance from edge of connection to bolt hole center must be greater than 1.5d

Design strength based on bearing:

1.5d=

NOTE: bolt hole deformation is not considered

C=	3	in ²
m _f =	0.75	Table E3.3.1-2
Ω=	2.50	
Φ=	0.60	
P _n ≃	3.0375	kips/bolt
$P_n/\Omega=$	1.215	kips/bolt
ΦP _n =	1.82	kips/bolt

Design strength based on bolt shear:

P _n =	5.3	kips/bolt	(Table IV-6)
Ω=	2.40		
Ф≔	0.65		
P _n /Ω≔	2.21	kips/bolt	
ΦP _n =	3,45	kips/bolt	

Governing limit state:

	Governing	Limit	State
olt	Bearing Str	enati	า

$P_n/\Omega=$		kips/bolt	Bearing Strength
ΦP _n =	1.82	kips/bolt	Bearing Strength

3	#	of	bolts	for	the	long sid	e
4	#	of	bolts	for	the	short sid	de